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NATIONAL ADVISORY COMMITTEE, FOR AERONAUTICS

TECHENICAL NOTE NO. 383

METAL-TRUSS WING SPARS*

By Andrew E. Swickard
INTRODUCTION

Since metal-truss wing spars are coming into general
use in the airplane industry, it is necessary that ration-
al methods for their design be. developed.

The purpose of the study recorded in this thesis was
to develop improvements in the current methods for the
calculation of the loads in the members of metal-truss
wing spars which are subjected to combined bending and
conmpression. : .

- If there were no axial load in the metal-truss spar,
its design would be very simple, because ordinary truss
analysis methods could be used to determine the loads in
1ts members. However, when axial compression is acting
together with a side load, the loads in the members of the
truss spar are functions of the deflections of the spar,
since the combination of these deflections with axial load
produces additional bending moments and shears. These ad-
ditiornal bending moments and shears may be referred to as
the secondary bending moments and secondary shears. It is
necessary, then, to calculate the effect of the deflections
of the panel points of a truss spar to determine the true

_1oads in 1%ts members..

The presocnt design rule of the Department of Commerce
specifies that equations™** for the cgleculating of bending
moments and shears on uniform beams subjected to combined
bending and compression shall be used for calculating the
bending moments and shears on metal-truss wing spars. In
order to use these eguations, which will be referred to

¥Thesis submitted in partial fulfillment of the require-
ments for the degree of Engineer in Mechanical Engineer-
ing Aeronautics, Stanford University, 1930.

**poronautics Bulletin No,: 7-A, Sec. 70 (&) (4).
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below as the Precise Formulas,* a value of effective mo-
ment of inertia is needed. .

Once these bendinz moments and shears have been de-
termined, the lcads in the various truss members can be
calculated by the use of ordinary truss analysis methods.

The effective moment of inertia of a metal-truss wing
spar is something which is not as easily determined as the
moment of inertia of an ordinary wooden spar. At first,
one might erroneously belleve that the moment of inertia
at any section of a truss spar is the moment of inertia of
the areas of the two chord members about the centroid of
thegse areas. In the following discusslon, this momsnt of
inertia will be called the "chord moment of inertia." The
chaord moment of inertia at any section wounld be the true
monent of inertie if the wed members were of infinite area
and did not deform under load. The fundamental beam egua-
a2 '
Tion, M = EI o

dx
based, was derived under the assumption that the shear de-
formation was so small that it oould be neglected. This
assumption of negligible deformation, resvlting from shear,
does not really fit even the case of ordinary wooden beams;
congequently the value of "EY 1is ardbitrarily reduced a
certain small percentage when the beam equations are being
uvsed for that material. With metal trusses, the shear is
carried by the web menbers instead of Dy a continuous web;
consequently the web deformation is so great that the de-
flection resulting from this deformation cannoit be neglect-
ed. This deflection will be referred to below as the "webd
deflection." As a result, the value of a chord moment of
inertia nust be decreased to allow for the decreased stiff-
ness waich is caused by the deformation of the wedb members.
The portion of the truss spar deflection which results
from the deformetion of the chord members will be referred
to as the Y"chord deflection.”

upon which all beam eguations are

The Department of Commerce rule specifies that the
monent of inertia to be used in the Precise Formulas shall
be determined by backfiguring from deflections whilch re-
sult when the truss spar is subjected to side load. The
truss spar deflections may be calculated by any convenlent

1

¥See Chapter XI "Airplane Structures,? by Niles and Newell.
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deflection method,* or may be experimentally determined
from full-scale tests. Assuning the truss spar to be an
ordinary beam, a value of effective moment of inertia is
backfignred from the appropriate bean deflection squation
by a substitution of the previously determined deflection
values,

One can readily see that this backfigured effectivse
nonent of inertia cannot be greatly in error. However,
the entire backfiguring process is so nechanical that the
designer does not see the theoretical comrsiderations which
are automatically included in that process. Ian this the-
sis, a direct method of calculating the effective moment
of inertias of a netal-truss wing spar is developed. : This

direct method is built up from consideration of the actions

of the individuval truss menbers; consequently the designer
acquires a nuch better understanding of the quantities
which affect the effective nmoment of inertia than he would
by using the backfiguring method.

It was originally thought that the effective moment
of inertia of a metal-truss wing spar might be determined
directly from the geometrical properties of the chord and
web members. Further study, however, proved that the ra-
tios of the strains of the web mémbers to the stralng of
the chord menbers rust be known in addition to the geo-
netrical properties of the truss spar to determine the
correct value for the effective noment of inertia. Since
these ratios are functions of the external loading, it is
necessary to know the type of load to which the truss spar .
is to be subjocted, before the effective monent of inertia
can be calculated.

The material of this thesis is divided into threse
parts. The derivations of the theoretical concepts are
given first. The practicel applications of the theory
follow. Finally, in the form of an appendix, the effective
nonent of inertia of an actual netal-truss wing spar is
calculated. This wing spar was built and tested-for de-
flection under combined bending and conpression by the
Boeing Airplane Conpany. The calculated value of the ef-
fective nmoment of inertia is checked against the test data,
and conclusions are drawn regarding the accuracy of the
calculated value of effective moment of inertia.

*See page 311 "Airplane Structures" by Niles and Newsll.



4 N.A.G.A. Technical Note No. 383"
THEORETICAL DERIVATIONS

The purposo of the f0110wing derivations is the ra-
tional determination of the effectivo moment of inertia
of a metal-truss wing spar.

If there i1s no shear deformation, the beam equation

M = BI gf%. or I = M __ is accurate, With metal-truss
X di& : -
E
dx

wing spars, the shear deflectlon resulting fron the strain
of the web members 1s so largs that the ordinary beam equa-
tion does not hold. The beam equation may be made to apply
if the valve of I, the chord moment of inertla, is prop-
erly reduced to allow for shear deformation, In other
words, the deflection of the spar produced dy webd member

2
deformation increascs %—%, and conseguently reduces the

X
effective value of 'I. Oonsequently, the first step in the
solution cof the problem 1s to derive an equation which gives
tne increments of web deflection between adjacent panel
points of the truss spar in terms of the deformation of the
web members. Next, the relation between the wedb deflecticn
inecz ements between panel points and the resulting change

in E~% nust be dotermined. Then an accurate method of
x

calculating the decrease of effective moment c¢f inertia
due to the changes in %EE must be developed. Since the
2
monent of inertis of an ordinary truss spar variles from
one panel to the next, it i1s necessary to work out a means
of weighting the effect of the moments of inertia in the
various penels upon the stiffness of the spar as a whole.
Finally a method of computing the sffective moment of in-
ertia of the entire truss spar must be developed from the
reduction of chord moment of inertia in oach panel, and
from the relative importance of the moments of inertia in
the various panels.

The theoretical derivations below include three sec-~
tions which have only an indirect bearing on the main de-
velopments of the thesis. The first of these sections
covers the derivation of an equation for the increment of
deflection between adjacent panel points produced by the

ES)
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deformation, or strain, 0f_th§'chord members. The second
is the derivation of rules. for calculating the total de-
flections of the panel points of a truss d&irectly from the

web and chord increments of deflection between pancl points.

This method of calculating deflections 1s very slmple and
direct, consequently it can often be used instead of the
standard deflection methods. Its main value, however, is
that it is developed from simple geomsetrical relations in
the truss and thus glves one a very concrete concept of
the action which takes place when a truss deflects under
load. The third of the three sections is one which gives
an exact method of calculating the total bending moments
and shears to which a metal truss wing spar 1s subjected
when acted upon by axial and side loeds. It is an ex- .
tremely lengthy method, and is only of value in checking
the aspproximate method of calculating the effective moment
of inertia. This exact method is not a development of the
thesis; it has been knowrn to structural engineers for some
tine.

(I) INCREMENT OF TRUSS DEFLECTION
" BETWEEN ADJACENT PANBIL POINTS

PRODUCED BY THE STRAIN OF THE WEB MEMBERS OF THE PANEL

Parallel chord trugges.~ Refer to Figure 1 of the
dlagram sheets., ABCD represents the center lines of the
members of one panel of g truss. When the truss is sub-
Jected to load, web member BD is strained; consequently
ranel point D deflects an amount D-D' above panel
point A. The object of the following derivation 1s to
determine the relation between the deflection D-D', and
the strain in web member BD.

There are three assumptioqs on whkich the following -
derivation is basged::

1) The deflections of the panel points of the truss
are so small that the arc traced by one end of a truss
menber when the member is considéred to rotate zbout the
Pin at its other end approxinates a straight line.

. 2) The menbers of the truss are assumed to be con- ’
nected by pins.
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. .Z) Since the principle of superposition is implied
,when one ‘speaks of the total deflections as being the sum
of chord’ deflections and webd deflections, it is logilcal .
to calculate the deflectiong produced by the strain of the
webd nmenbers using the assumptlon that the chord nembers
are unstrained. .

. Web member 3BD 1is strained an anount represented by
eD!', This gtrain allows member AD +to rotate about A,
and take up & new position AD?,

LDeD', [(eDB, and 4LDD'A can be considered to be
right angles, since the radius of an arc is perpendicular
to the tangent at the point of intersection of the radius
and the arc,

£ oDD! =,L(900—n), since the sides of the angles are
mutually perpendicular.

eD!
sin (£eDdD!') = 55T

Substituting the value of LeDD':

°lpn) = 82!, eD?
sin (90 -m) = SpTs Or cos M TET
DD! = 8Bl
cos m
Since eD! = the strain of the weDb member, and DD' 1is

the" increment of web deflection,

FL (wed)
deflection increment = AB """ 7, : (1)
cos M

Nonparallel chord trusses.- Refer to Figure 2 of the
diagram sheet, 'ABCD rep»esents the members of one panel
of a nonparallel chord truss. The line CDV represents
the direction in which the deflection of the panel point
D 4is to be calculated.

When the dlagonal wed member BD i1s strained, chord
member AD is allowed.to rotate about A4, and tekes up
the position AD!, The point D traces the arc DD!
when AD rotates about A. Member BD rotates about B
and occupies the position 3BD'. De is an arc drawn with
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a radivs BD about B as a center; consequently eD!?
represents the amount BD was strained. The same as-
sumptions underlying the parallel chord analysis apply
to the following derivation; consequently

eDD' = Lo, LDIDY = sy, and 4DeD! is a'right
angle. Therefore ' -

! = __eDd' __
DD sin £eDD!’

D'V 1s drawn from D! perpendicular to VD,

. ¥D
cos LVDD! = 5'-'—:5.

Thus, YD = cos vy ¥ eDl.

sin o

But VD 4is the deflection increment, and ED!? is the
strain of the diagonal web member. Thereforse

deflection increment = fx_COS ¥ (2)
AE sin o

In the foregoing discussion the web nember considered
was diagonal. For a vertical web member, eguation (2) ap-
Plies if the angles ¢4 and o are taken properly. o is
the angle betweon the vertical web member and a chord nen-
ber at the intersection of the vertical member with a chord
member, which intersection is separated from the left sup-
port by the greater number of primary wed members. v is
the angle between this same chord member and the perpen-
dicular to the direction of deflection. Thus for member
CD in Figure 2; o is angle BCD and vy 1s 0°.

In the case of truss which has no vertical wed mem-
bers, equation (2) applies directly since no vertical webd
member was considered in its derivation.

Where the vertical webd member is secondary, its de-
formation affects only the deflecction of the panel point
where the member 1s attached. It should be noted that the
type of vertical web member shown in Figures 1 and 2 in-
creases the deflection increment ¢f only one of the two
intorsections of the web member with the chord members.



8 ¥.A.C.A., Technical Mote Ho. 383

Thus in Figure 2, it can be readily scen that the strain
of member D0 increases the deflection incroment boitween
panel points B and.. &, but does not affect the deflec~-
tior increment between panel points A and D.

(II) CORRECTION OF CHORD MOMENT OF INERTIA

FOR WEB DEFLECTION

If the web members of a truss spar were not stralmned,
the truss spar could be considered to be an ordinary bean
which had values of moments of inertis equal to the corro-
sponding values of chord nonents of inertia.*

The equation which ig the basis of bean theory is

1 : -
I= ~—L§*- (3)
g 4%
az®

By examining equation (3), it is apparent that any

2 .
modification of %—% represents a change of moneant of in~
- :

P~

ertia. At any section of the truss spar, the gtrain of

2

the web members changas i—% and consequently, the ef-
dx= '

fective moment of inertia. The following derivation is a

calculation of the increment of Q:§ produced by the
. dx™
strain of the web mombors. Tho change of moment of inortia

roprosoentod by this increment of éi% is then calculated
dx
from cquation (3).

Thoere are soevoeral concepts“ﬁpon which the following
derivation is besed, and ther will De stated beforo tho
dexrdivation is given. ' . }

*Soo page 311 "Airplanc §tructurost by Nilos and Nowoll.

s d
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The first concept is a demonstration of the effect
.0f web deflection upon- the slope of the elastic curve of
a truss. In Figure 3 of the diagram.gheet, AC is the
line Joining the two supports of the truss. D" repre-
sents thoe position of panel point 3 when both chord and
web member deflections are considered. '

: Bb! Bb!
N t = =X _ = = .,
ow an j % agd tan k 15

The change of slope produced by the deflection of the
web members is

ten j - tan k = Bb! _ Bb! _ D'bE,

AB AB AB

Therefore, the change of'slope produced by the web
members is the web deflection increment divided by the
proper panel length,

The average rate of change of slope from one panel
to the next is then the difference in web deflection slopes
of the two panels divided by the.distance between tho
points where the slopes are taken. .

By similar regsoning, the average rate of change of
slope produced by chord deflection is the difference be-
twoen the chord deflection slopes in adjacent panels di-
vided by the distance between the points where the slopes .
are taken.

The total averago rate of changs of slopoc betwcen two
adjacent panels is the sum of the average wed and chord
rates of change of slope.

The second concept is concernod with the relation be-
twoon the slopes of the chord mewbers of a truss spar and
the slopes of the elastic curve of the spar. If straight
lines are Grawn so that they comnect the deflected pansel
points of the upper or lower chords of & truss, a polygon
will result. For most truss spars, the deflections of the
panel points of the two chord members are slightly differ-
ent; consequently, if the polygon representing the deflect-
ed neutral axis of the truss spar is to be constructed, it
should Do the "averago" of the polygons for the two chord
panel point deflections. However, the differencec between
the deflcctions of the two chord membor panel points is so
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small that the neutral axis polygon can be considorcd to
be the same as the polygon of either chord. If a smooth
curve is drawn through the peirnts of either one of these
defloction polygons, a deflection curve will result. o
Since the slopes of the chords of the polygons are very
small, this smootlh curve may be considercd the elastic
curve of the truss spar.

In Figure 4 AD represents the undeflected position
of the lower chord members of a truss. ABCD represents
the deflected position of these members of the truss. The
smooth curve ABCD is the elastlic curve of the truss, and
is a flat "parabola' for all ordilnary deflections. Hat-
wrally, the slope of the elastic curve varies at different
points along the span. TFor flat parabolzs the slope of
the chord is approximately the slope of the tangont to the
curve at the nid-point of the arc subtended by the chord.
Therefore, the slope of a chord member can be conaidered
to be the slope of the elastic curve at the middle of the
panel where the chord member occurs.

The web rate of change of slope will now be deter-
mined from the web deflection increments of adjacent panels
0f a truss, Refer to Figure 5 of the diasgram sheet. ABC
represents the undeflected position of the npper or lower
chord members of a truss. 4bec roepresents the position of
the chord nombers whe:x only the strain of the wed members
has produced deflection. Bb is thedeflectilon increment
produced by the strain of the web nembers in panel AB.
c'c 1s the deflection increment produced by the strain of
the web mewbers in panel BC. As was previously demon-
strated, the slopne of the chord menmber of a panel approxi-
nates the slope of the elastic curve at the mid-point of
the panel. Therefore, the slope of Ab (referred to ABC)
is the slope of the slastic curvec at the mid-point of pancl
AB, Sinilarly, the slopeé of chord member be is the slope
of the elastic curve at the wmid-point of panel BC,

The slope of nmember AdD = i) .
= AB
The slope of member hc -——-.%%I—.

The difference between the slope at the mid-poiant of
panel ' BC and the 'slope at the nid-point of panel AB is
therefore ' ' : o
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ce! _ Bb
BC AB®

Then the average rate of change of slope between the
nid-points of the two panels is

ce! _ Bb
BC AB .. 43y (
= . average). (4)
z (AB + BC)  g.2
Assuning that the adjacent panels are of equal length,
"X," equation (4) becomes EEL_%_EQ_-
: _ x

Since the deflection curve is a flat parabola, this
average rate of change of slope is the "exact" rate of
change of slope at a point half way bPetween the mid-points
of the two panels, Thus, since the panels ars of equal

-
longth 99——;—23 is tho exact rate of change of slope at

X
thoe panel point B. Therefore, the rate of change of slopeo
at a panel point is approxinately the difference between
the deflection increments of the two adjacent panels di-
vided by the square of the panel leangth.

Let 227082

bPe the rate of change of slope at any
X
panel point, where &, - 8, is the differeace between the

web deflectiosn incremoents of the two adjacent panels.
BEquetion (3) is

r &3¢
I=—-—;‘£-——-' 2’.:-—...6.:;:_2.,
g &% 1 M
dxe

2 2 2
ifz = &7 (chord) + L¥  (web).

ax?® dax® ax®
. .d_EE . . d_a'! d.zx
= - b b
L B s (chord)+ E E;é (web) 1 . B Py (web)
I M M Ichora N )
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E(85 - 81) (5)

Bquation (5) ‘applies to a section of a truss spar oc-
curring at a panel point; so M 1s the moment to which
the spar is subjected at the panel point, and Ic is the
chord moment of inertia at the panel point.

The sign of the deflection increments must be taken
correctly, or the quantity 6, - &, will be in orror.

Moving along the truss from one support to the other, if
the strain of the web member tends to incrocase tho deoflec-
tion of the trues, its sign is positive; if tho strain
tends to decrease the deflection of the truss, its sign is
nezative. Thue refer to Figure 6.

Considering support 4 as a datum, the tension in
members AH and BG produces strains which tend to allow
the truss to deflect upward (with reference to support A);
the strains in members GD and FE tend to docreaze this
upward deflection when one passos from support A to sup-
port B,

Consider equation (5) which is

8§, is the web deflection increment of the pancl tho
farther from the "datum support, and &; is the web de-
flection 4increment of the panel the nearer to the "datum"
support.

For parallel.chords, & 1Ls the sum of sm—bl—me
: "AE coa m

values for all the web members within the panel.

For ncnparallel chords, & is the sum of the

PL_c98.% " yolues of all of the wedb members within the panel.
AR sin o _
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The web deflection increment produced by a vertical
web member should be divided equally between the two ad-
jacent panels. However, it is more conservative to place
the deflection increment eatirely in the Danel which 1s
the nearer to the datum support.

‘III. THE EFFECT OF THE MOMENT OF -INERTIA
OF A PANEL OF A TRUSS SPAR UPON TEE DEFLECTION

OF ANY PANEL POINT OF THE TRUSS

It is often desirable to know the effect of the mo-
ment ¢f inert'ta of any one panel of a truss spar upon the
deflections of all of the ranel points. In the following
derivation, thé truss spar will be treated as a beam with
varying moment of inertia; consequently, the ordinary beam
theory methods of calculating deflections can be employed.
M.
BRI
all panels except the one Wthh contains the

is zero for
M
EI

For simplicity, it will be assumed 'that
for

which the deflecticn offcct is being calculated

In Figure 7 of the diagranm sheet, the deflsction of
the pciat b will be calculated by the method of elastic
weights for beams.*

The elastic reaction at f is Qo %'

The elastic beading moment at b which is numerical-
ly egqual to the actual deflection, is

QalD _ M & op - ; '
T T BT L 0D = deflection increment. {6)

Since panel ps 1s any pancl of the truss spar, and
P 1ig any panel point of the truss, equation (6) gives the
effect of the monent of inertia of any panel of a truss
spar upon the dpflection of any panel point.

*Pazé 303 "Airplane Structures'™ by Niles and Newell.
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Examine equation (6), For any truss spar, B and I
are constants. If the deflection of any particular pansl
point is being investigated, D is a constant. As a re-
sult, the effect of the moment of inertia, I, of a panel
upon the deflection of the panel point in question is de-
ternined by:

1) the length of panel, «, where I occurs;

2) the magnitude of the bending momont, M, at the
middle of the panel where I occurs; and

3) the relative location, ©, of the panel contain-
ing the moment of 1nertia.

In equation (6): D 1is always the distance from b
to a support such that Qa is not included in the dis-
tance. C is tho distanco from Qa %o a support such that
b is mnot included in the distance.

IV, METHOD OF CALCULATING THE EFFECTIVE MOMENT

OF INERTIA OF A METAL-TRUSS WING SPAR

The following method of calculating the effective mo-
ment of inertie of a truss spar is based upon direct ana-
lytical considerations of the loads in, and the sizes of
the members of the truss spar. This direct analytical
method has the advantage over any backfiguring method in
that it gives one a very much clearer idea of the various
factors which enter into the effective moment of inertia
detormination.

The following derivation is concerned with doter-
mining the proper "average" of the corrected momeants of
inortia of the various panels of a truss spar.

Since there is a different value of moment of iner-
tia in each panel of g truss spar, it is obviously not
vopsible to determine a single value of moment of inertia
which;, when substituted in the proper deflectlon formula,
will result in absolutely correct deflections for sll
panel points. However, it is pogsible to determine a val-
ue of moment of inertiasa which will give a correct value of
doflcoction for any ono panel point. Thoe gquestion then
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arices as to which panel point should have 1ts deflection
correct.

Since all deflection curves are more or less flat and
parabolic in shape, the meximur ordinate and the two zero
ordinagtes of the curve arc the mcst inportant in locating
the curve., Ian other words, if the naximum ordinate and
tiic zero ordinates at the supports arc located, a smooth
curve can be passed through the three ordinates, which
curve will result in fairly asccurate deflection valunes for
all panel points. -Practically all %russ spars over two
supports have their point of maximum deflection fairly
close to theilr midspan points. Consequently, the midspan
point will be chosen as the point which is to have the
correct deflection. '

Consider equation (6):

deflection incremont = %% g_ig%_i@l for one panel.

Equation (6) gives the deflection at any panel point,
when all of the panels except one are comnsldered to have

zero %% values. Now, 1f all the panels of a truss spar
arc considered to have finite wvaluss of é%, the deflec~
tion at any panel is the sum of thoe values obtained from
equation (6) for all of the panels. Thus equation (6)
beconos:

total deflection _ i =mn,y ¢ (6) (D)
at any point Zi = 1(§f 1 )g (7)

where T 1is the number of panels.

Since tho midspan point has been selected as the
point which is to have the correct deflection, the deflec-
tion given by cquation (7) will be mede that of the midspan
point.

Thea D of equation (7) = 1/2 span = 1/2 L. (See
fig. 7 of diagram sheet.) Equation (7) becomes:

flection = ¢ = M Mg
total deflection = Zi 1 [ir (¢) K]i- (8)
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Where X = D /2
L X X

=t
JAV]
e

-1
E L

Now the I in equation (8) varies from panel to pan-
el, and 1t 1s desired to determine a constant value which
will give the same deflection at. the midspan point as do
the various different values. Let Iy be this constant

value, Then, considering equation (8):

total deflection _ i = M [y 1 i=n -
at midspan point 2y = 1 [I ¢ K 17 Iklzi - U C KJi.
LS.
Solving for =~ :
Ik
— i =
KEi'nlifﬁc—J-z ﬂﬁiac:[
2 = i= 21 L7 1. _i=1 ‘= i. (9)
e o E=mpo . i=nno
‘21=1 Yo C:li Zi___l[lfor,c:[il

In equation (9), € is the distance from a support
to the panel contalning the moment of inertia, such that
the midpoint of the span is not included in the distancs,
M is the average bending moment in the panel, and o is
the pauel length.

Divide the numorator and the denominator of equation
(8) by "My X ap X L/2, where M, is the maximum average

bending woment in any panel, qn is the greatest panel
length, and L/2 1s one half of the span.

Tae "effoctive! moment of inertia given by equation
(9) is not changed by this division, because the Mg,

®ps and L/2 terms factor out of both the numerator and
denominator, and then cancel cach other.

Consequently .
I =m [M a g_jj
1 - “y = 1 HE_T AL/ 5 (10)
T — y
LI ' S-S
Li = 1 | ¥m COm L/2 i
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V. INCREMENT OF DEFLECTION BETVEEW ADJACENT PANEL POINTS

PRODUCED BY THE STRAIN OF CHORD MEMBERS

Since. the deflection produced by the strain of the
chord members is the only deflection to be.considered, the
web members will be assumed to be wlthout strain in the
following derivation. .In this discussion, the same funda-
mental assumptions will be made about the truss deflections
and construction as were made in the derivations of the
formulas for increments of web deflection.

In FPigure 8, ABCD 1s a panel of an undeflected
truss. TWhen the truss deflects, the strain of the lower
chord members between D and the support causes D to
move to D!, The strain of the upper chord members betwesn
B and the support causes A to move to A' and 3B to
move to g. Consider the pin to have been removed from the
joint at B; then member AB will have to rotate about A?,
and member DB will have to rotate about D' wuntil their
free ends meet at B! Dbefore the pin can again be in-
serted. The problem of calculating the increment of de-
flection between panel point .A and panel point B 1is
then to calculate the length of g3B!'.

_ According to the previous assumptions, the deflections
are so small that:

a) 3Bl'g and f£B! can be considered to be straight
lines which are perpendicular to AB and DB respectively.

b) The angle included between DB and D!B!' 1is so
small when compared to 8 that D!B! can be considered to
coincide with DB as far as the truss as a whole is con-
cerned. :

Now, LfBlg = L8, Dbecause the sides of the angles
are mutually perpendicular.

tan L8 = % fBtg = L& - fg :
an an LEBlg = “37 = Fofisobion imc. (12)

fg = £fB + 3Bg. - _ (11a)
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Alﬁo; fB = DD! sgsince the chords are parallel, and webd
member DB is_unstrgined. Bg 1is the sum of the values

of %% of upper chord members between B and the support,

and D!'D 1is the sun of %% of lower chord members be-

tween panel point D and the support. Therefore, substi-
tuting in equation (1lla): '

‘ — wEL (upper ¢ PL ¢lowery
Te EAE (chord) + “AE (chord)' (12)

Substituting from equation (12) in equation (11):

PL ,upper PL ,lower
2 5% Chord) T % IF (chord)
tan ©

deflection iac. =

VI. DERIVATION OF CHORD AND WEB DEFLECTION RULES

In two of the foregoing sectlions, feormulas for cal-~
culating the increments of web and chord,deflection be-
tween adjacent panel points were derived. ZFrom a knowl-

edge of these deflection increments, it is possible to -
determine the shape of the resulting deflection curve, and
then by locating this deflection curve so that the deflec-

tion of the supports are zero, the actual deflection of the
various panel points can be determined.

Thus, consider Figure 9 of the dlagram shest. a, Db,
c, 4, etc., are panel polnts of a ftruss. The increment
of deflection between panel points a and b is =x, be-
tween panel points D and ¢ is y, and so on. Since,
in the general cass, the true slope at a is not known,
any slope can be assumed witih the result that the deflec-
tion of the panel point g at the other support will not
be zero. ©Now, if the entire truss is considered to be
rotated about a wuntil g falls om tihe support B, the
true position of the various panel points will be located.

Z, the angle through which the truss is rotated, is
very small; conseguently, ag is very nearly the game
longth as ap, and lines corresponding to de are the
same length practically as lines corresponding to dh.
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Therefore, considering panel point d, the correction to
be applied to the deflection is ef. ©Now, ef = m tan 2.
Consequently, the correction to the deflection of any pan-
el point is the product of +tan 2 and the distance from
the panel point to the support a.

There are gseveral special cases of deflection calcu-
lation wiaich do not reguire the use of the above correc-
tion procedurse. a) In calculating the chord or. web de-
flections of cantilever trusses no correction is reguired,
because the slope of the center line of the truss is known
to be zero at the support. Also, in calculating the web
deflections for a %russ which is symmetrical about its
midspan point, no deflection correction is necessary, be-
cause the deflection of the right hand support will be
zero without any rotation of the truss. The fact that the
web deflection of the right hand support is zero can read-
ily be seen by considering such a symmetrical truss. Refer
to Figure 6. Starting from support A4, the strain of webd
members AH, BH, and 3BG produce upward web deflection
of the panel points. Members @D, DF, and TFE produce
corresponding dowaward deflesctions; conseguently, the de-
flection of the support at E 1is calculated to bde zero
directly from the deflection increments, and no correction
is reguired.

VII. EXACT METHOD OF CALCULATING TEE TOTAIL BENDING MOMENTS

END SHEARS TO WHICE A METAL-TRUSS WING SPAR IS SUBJECTED

This exact method, as applied to a beam, is given 1in
books on airplane stress analysis*, and only a condensed
treatment of its application to a truss will ‘be given here.

If the total deflections of all of the panel points
of a metal-truss wing spar whichk is subjected to combined
bending and compression were known, the total bending mo-
ments and shears could be easily calcunlated. The total
bending moment at any section would be the primary bending
moment plus the product of thes deflection at the section
and the axial compressive load. The total shear at a sec-
tion wonld be the primary shear plus the product of the

*Page 67, "Structural Analysis and Design of Airplanes,”
by 3. C. Boulton.
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slope of the elastic curve at the section and the axial
compressive load. '

The total deflections can be obtained by a repeated
deflection ‘calculation process. The deflections produced
by the side load can be calculated by any standard deflec-
tion method., The first secondary bending moments can be
obtained by multinlying the primary deflections by the
axial load. The secondary shears can be obtained by mul-~
tiplying the slopes of the elastic curve of the primary
deflections by the axial load. The increase in the loads
of the various members of the truss spar produced by the
secondary bending moments and shears can be calculated by
any standard truss analysis method, Then, a new set of
panel point deflections can be calculated from the new
loads by ordinary deflection methods. This process can Dbe
continued until tihe increase of deflection becomes negli-
gible; conseguently, the total deflectlons of the truss
spar can be determined.

Thisg exact method offers a mmeans oFf checking the wvalue
of effective moment of inertia calculated by the methods
develoved in the previous parts of this thesis. In general
the approximate method will give results which are 3-5%
more conservative than will the exact method. Consequontly
the approximate method is entirely satisfactory for prac-
tical design worl, and should be used instead of the exact
method because it 1s so much shorter.

PRACTICAL RESULTS

The theory which has been developed above has two im-
portant practical anplications. One is the calculation of
tihe effective moment of inertis of a truss spar from the
geometry of the spar and the loads to which the spar is to
be subjected. The gecond is the determination of the most
sconomical location ¢f metel for st:fzening a truss syar
which has too muech deflection.

Calculation of effective monent of inertis.-~ The of-
fective moment of inertla is calculated from equation (10)
of the theoretical derivations.
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BEquation (10) is:

SR S
1 "i=1 My I ap L/2]4
I, = -
S - Tk
i=1 My o, L/2 5

where Ik is the effective moment of inertia of the metal
truss spar.

H 55 the bending moment weight of a panel, and is

L
determined by dividing the average bending moment in a
panel by the maximum of the average bending moments in the
panels of the truss.

éi is the panel length weight of a panel gnd is de-

termined by dividing the length of a panel by the maximum
panel length. .

5%5 is the distance from support weight of a panel,
and is determined by dividing the distance from the middle
of a panel to the nearest support by one half the length
of the span of the truss spar. .

T 1s the number of panels.

I is the corrected chord moment of inertis of a pan-
el., This corrected chord moment of inertia is, calculated
from equation (5) of the derivations., Equation (5) is:

1.1, B8, -8,)
1 Ie ux> _
_ a4 Ay
I, 1is the chord moment of inertia and equals ———=

(dpproximately), where d is the distance between chord
center lines, 4, is the cross-sectional area of the up-

per chord, and AL is the cross-sectional area of the
lower chord. '

8z - 81 is the difference in the web deflection in-
crements of adjacent psnels. For parallel chord trusses,
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PL
AE cos M -
members within the panel. (See¢ eq. (1).) For nonparallel

§ is the sum of the values of all of the webd

chord trusses, & is the sum of the =2 €98 Y wvalues for
: AE sin o

all web members within the panel. (See eg. (2).) Angles
nm, ¥, and o are illustrated in Figures 1 and 2 and are
explained in Section I of the theory.

M 4is the bending moment at the panel point in ques- _ -
tion,

X 1is the panel length. - =z

. The value of I obteined from equation (5) is the
corrected moment of inertia at a panel point. Since a
corrected moment of inertia for a panel is required, the
vealues of I at the two panel points of a panel must be
averaged.

The following procedure will be found expedient in
calculating the effective moment of inertia:

1) Calculate the loads in all of the members of the
truss spar when only the side load is acting.

2) Obtain the corrected values of moments of ineriia
for all of the panels. -

3) Calculate the bending moment weight, the panel
length weight, and the distance from the support welght
for sach pansl.

4) Obtain the product of the three types of welghts
for each panel. _ .

5) Multiply the inverse of the corrected moment of
inertia in each panel by the products of the weights of
the panel,

6) Divide the sum of the products obtained in 5) for
all panels, Dby the sum for all panels of the products ob~-
tained in 4). The reciprocal of this quotient is the ef-
fective moment of inertia of the metal truss spar.

Some of the terms of eqguation (10) depend upon the .
loads in the members of the truss spar. If a metal truss
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spar is subjected to combined bending and compression, the
loads in the various members cannot be calculated until

the effective moment of inertia is known. Comseguently,
the primary loads must be used in solving equation (10)

for the effective moment of inertia. This approximation

is good because the ratio of the chord member load to web
member load in a panel does not differ greatly betweon the
condition where side load is acting alone and the condition
wieres side load is acting with axial load.

However, if greater accuracy 1s desired, equatlon
(10) can first be solved assuming that only side loads are
acting. The calculated value of effective moment of iner-
tia can then De substituted in the Precise Formulas and the
total bending moments and shears determined. From these
values of moments and shears, the loads in the various menm-
bers can be calculated. Eguation (10) can be solved again
with these new loads, and a more accurate value of effect-
ive moment of inertis 1s obtained. This process can be
repeated until the effective momeant of inertia is as ac-
curzte &s the designer desires.

Bconomical locgtion of metel for sgtiffening.- If a
metal-truss spar is found to have too much deflection, it
is desirable to know the panel in which a given increase
in the size of chord members will produce the greatest
stiffening effect, '

Equation (10) of the theoretical derivations gives
the designer the necessary information for economical lo-
cation of metal for stiffening.

It is apparent from that equation that the quantities
which are important in selecting the panel for economical
location of metal for stiffening are the bending moment

. M . . G
weight, =, and the distance from support weight, ——.
& Y a I & /2

m -
Since an addition of metal to the chord members of a panel
increases I, this lncrease in metal 1s going to have the
greatest effect in the panel where an increase of I will
hagve the greatest effect. It is obvious that I will have
the greatest effect upon I, the effective moment of in-
erti in % ¥ x _C s s . hus,
rtia, he panel where = 575 is a maximum Thus
the panel in which the chord members are to be increased
in size should be the one which has the largest product of
bending moment weight and distance from the support weight.
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"APPENDIX

In the boldy of this thesis, several purely thsoret-
ical concepts have Deen developed. In this appendix, the
numerical application of these concepts to a practilcal
metal-truss wing spar will be made. This practical truss
has previously been subjected to lateral and axial load,
and the deflection of its panel points measured. 3By using
the theoretical concepts, the deflections of the panel
points under the sane loading are calculated. This re-
sulting set of measured and calculated deflection values
will enable one to check the accuracy of the theory used
in determining the calculated values. The metal-truss
gpar used in the following caleulations was built and
tested Dy the Boeing Airplane Company.*

Figure 1 of the appendix is a line diagram of the
test truss spar and shows the ftype and intensity or the
load to which the spar was subjected. End moment was '
placed upon the truss spar &t the left support by means
of a 2000.1b, weight on the end of the stsel plate, AB,
The truss spar was loaded at its panel points by means of
motal straps which carried weights at thelr lower ends.
The connection of strut BC to the spar at B is ac-
conplished by a pin, -and the other end of BC 1is con-
nectsd to a foundation which is sunfficiently distant from
B to allow the axls of member BC to represent the d4i-
rection of the load carried by BC. The spar ls supported
at D Dby another pin connection.

Tae angularity of member BCO places axial compres-
sion in the truss spar, wkich compression is a function of
this angularity, and of ths spar reactiomn at B.

The deflections at several panel points of the spar
were measured vhen the spar was deflected under the loading
shown in Figure 1.

The object of the following set of computations 1s to
calculate the deflections of the truss spar at the panel
points where the deflections were actually measurcd in the
test, and under the same loading as that used in the test.

*See Test No. 10096, Boeing Airplane Company, Seattle,
Washington. .
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Outline of calculations.-

1) The chord moments of inertia of the various
panels are corrected for wedb deflection.

2) The effective moment of inertia of the truss
spar is calculated from the corrected moment of inertia
values.

3) This effective value of moment of inertia is
substituted in the proper Precise Formula for deflection;
consequently, the deflections of the spar under the loading
shown in Figure 1 are determined. Since the deflectlons
have been measuvred under the same loading, a comparison
between the measured deflection values and the calculated
deflection values is had.

Explanations and Assumptions.- Panels (1-2) and (13-
14) are not considered separately because it is impossible
to determine the cross-sectional areas of the members of
these panels. These areas are indeterminate because gus-
set plates are included between the chord and web members.

Since the cross—sectional areas are indeterminate,

.some sort of approximation is mnecessary if the wed deflec-
tion effect upon chord moment of inertia is to be calcu-
lated. It seems reasonable to assume that the effect of
web deflection in panels (1-2) and (13-14) is the same as
that of the corresponding adjacent panels (2-3) and (12-
13). It would probably be more accurate to assume the webd
deflection effect of panels (1-2) and (13-14) %o be zero,
since the area of the gusset plates is guite large. How-
ever, it is more conservative to assume the deflection ef-
fect to be greater than zero, so the first mentioned de-
flection assumption is used in the calculations.



TABLE I

WEB DEFLECTION INCREMENTS

(4) () (C) (D) (E) () (@)
Web member Load PL PL Web member | Load PL,
(diagonal) (1b.) A Acoe 7| |{vertical) { (ib.) A cos 1)

2.2 H- 2385. 277,000 8,000 -2 -1122 61,300

23 egoa. 232,400 94, 000 ﬁ- ﬁ e 1,400
25 1620. 188,000 399,000 762 1,600

-26 1238, 143,700 305,000 5-26 g 31,800

-27 €55. 93.200 210,500 1-27 2 21,950

7-28 yye. 800 116, 500 g-28 202 12,130

8-29 9.3 10 370 22,000 —

29-10 £93.5 34,050 72,300 10-30 18 17,380
30-11 676.5 78,500 166, 800 11-31 98 27,200
31-12 1060. 123,100 261,800 12-32 678 37,050
32-13% 1443, 167,700 350,000 — .
. = co = 1.
mmiein (-2 308 W, [orn | e e PEUIER,

*O}{ ©30N TEOITYUSEL 'V'O'V'N

785

9g




TABLE IX

CORRECTICN OF CHORD MOMENTS OF IKERTIA

(8) (8) (©) (D) ® | @ @ @ |
Panel Total A H Ay 3 A JR— 1 1
deflection |Increment 2 Voop A
incrsment W w ¢ o
* g +
13 I8 lio3,00 | 13,400 [3,013,000 | L0345 :gggg 193 [ies
EL—5 +&5)3600 104,800 | + 7 167,000 | 626 200 1123 |ue3
My +336.g00 | 103,800 | 112,200 2,743,000 | .0378 0300 [k {77
6-7 + 232,150 18”'73’50 +222’9°° g,ggg,ooo -0222 0196  |.1w4{.1610
7-8 + 128,630 ’{2’520 +#29,350 & »000 '017%- 0163 |.wiak|.1577
89 + 22,000 0 -630_ +30,300 6’820’-000 -012 L1 owse6  [.awan|.1673
9-10 ~ 89,680 1&’ 80 +3g=% 6'19%0'000 '016111 ,01610  [.13} {.1575
10-11 -15%,000 %oh’geo Tgu'o " 0,000 0161 01772 .1k | 1591
11-12 -298, 850 850 | 24,020 - 15,410,000 | LOL335 1 3737 [.ahak|.1587
**10-14 ~356,000 57,150 | +16,580  [3,730,000 | .01532 01733 | 1%k |.1587
Explanation [Col.(D) + (G) |Difference [From Fig. 1A |x = 15in [Col. (C) | Average |[Seeo ¥|G + H
of Table I in values | by method Hﬁ ieg from [Jol. (E) |of valuos
of Col. (B) of moments | Col.(D) in Col. (]i‘)L
a2, . '
Calculation of I,: FI = B 6L x 0.2041 x 0.2041 _ 6.5’-!- in. *

¢ " A+A " 0.200 + 0,204
.og2

I o B4 x 0.2041 x 0.2400

c 0.2400 + 0.2041

by

. &
ml

= 7.075

£8g °*ON e3oON TBOTUUSRY *V'O'V'N

L2




TABLE III

CALCULATION OF EFFECTIVE MQMENT OF IRERTIA

(&) (8) (c) ) (E) (F) () (m) (1)
Panel Av. Moment | Panel |[Panel |Dist. from| Digt. Total g Products
M welght | length |weight | support weight | weight Iy
1~ ~26, 700 8725 | 22.5 [1.000 11.25 125 | L1091 .188 0205
-El - 6,&28 .2066 | 15.0 .667 0.00 333 0458 183 .0221
?ps + 6,470 2112 | 15.0 | .667 .00 500 | .0705 183 . Oalms
§b +16,550 LSl 15.0 | .667 60.00 657 | .20 177 .0lt265
6-7 +23,925 .782 15.0 | .667 75.00 833 .h3ﬁg .1610 | .0700
7-8 428,625 .936 15.0 | .667 90.00 1,00 .6 1577 | .o9s8h
8-9 430,600 | 1.000 15.0 .667 75.00 .833 | .555 .1573 .0873
9-10 | +29,850 .976 15.0 .667 60.00 667 | 435 1575 | .0685
10-11 | +26,410 .8635 ' 15.0 | .667 45.00 500 | .288 L1591 | .ous8
11-12 | + 20,300 .663 15.0 667 30.00 333 JAU72 L1587 | 0234
1o-14 | + 8,290 271 22.5 |1.000 11.25 125 | .0339 .1587 .00538
A £ A {c) (B) Col. (I)
D':"’;:%;e"n —-(—gm Fig. 18 | 555 | Fig. 1A % (Bx0XF) |papae 11 | (&) X (B)
2.9845 -5L808
1 _ 0,51808. _ s
T, = oo I; =5.76 in

8T °"ON ©%0H TBOoIUYSaL "V'O°'V°'N

BE



CATCULATION OF DEFLECTIONS PRODUCED BY AXIAL AND SIDE LOADS

(a) M(‘D) (e) (Q) . (e) / (£) (g)| =
- 2 ~D. coz L J
o3 fu BT TR

M
M, = 40,000 in.1b.; —E‘I:Hl :°+1:8 000 - 49203 w = ~12 1b./in.; WL = -12 X 180 = -2160; ’i'gi = -1080;

; ‘@;‘:"/10’00(6)'888 X 5.76 = g7.98; 3% = 96005 L/ =

115, 200
cos Lfj = -.26403; D, = Ml-w;] = -10,000~(-12) X 9600 = +75,200; Dp = My-wj~ = 0 + 12 X 9600 =+115, 200

0’ = <12 x %600 = -115,200; 220 T _va, 200- (75,5000 (-u2630) = +140,100
sin L/j +.96450

= 1.838; sin L/j =+0.96450

97 9g

TABLE IV

| (H) Deflec-
= | = x5 ] @ | 0 | @ binx/skesx/s| 6 [ | & |lions (in.)

ey

o
3
]
a

3 22.5| 506.2 .2295 + 24300+ 5000 -g +.2278 | +.9737 | -31900 |=73200 | ~3640( -.606
5 { 52.5]| 2756. gﬁ + 56650{+11670 | -1 +. 510& +.8597 | -7T1600 -3600 -9200| ~1.534
7 | 82.5/| 6806. 251+ 89L004+18320 466 | +.6656 |-104800 [-50000 [-13030( -2.170
9 {lia.5 L2650. [L.149 |+121600¢ 25000 -75900 . 912k | + . 409k {~128000 |-30800 {~12900| ~-2.150
11 [142.5 20300, [L.455 |4+1540004 31650 [-121900 | +.9933 | +.1155 |~139200 |- 8690| -8840| -1.473

Fig,

1A See above equations and data - = - « = = = - w - - - 0 - -0 - - - o -

¥ Page 202 - "Airplane Structures," by Niles and Newell.

488 °OH ©10§ IBOTUWOeE ‘Y 'O°'V'XH

62
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TABLE V

CALCULATED AND MEASURED DEFLECTIONS

Panel point | Calculated Measured Error | % Brror
deflection deflection
(in.) (in.) {(in.)
5 -1.534 -1.51 +.024 + 1,59
7 ~2.170 : -2,10 +.070 + 3.33
. 9 -2.150 -2.10 +.050 + 2.38
11 -1.473 -1.43 +.043 + 3.00
Page 4
H Test No.
Table IV 10096,
Boeing Air-
plans Co.
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Coneclusgiong.- An examination of Table V shows that
there is good agreement between the measured and calcu-~
lated deflection values. Thus, although the method used
in caleculating the effective moment of inertia contains
several approximations, tho good agreement betweon the
two scts of deflections shows that the effective moment
of inertia has been calculated fairly accurately.

The greatest percentage of error occurs at a point
which is very close to the support where sad moment is
applied. BSince the method used in caleculating the ef-
fective moment of inertia was based upon having the max-
imun ordinate accurate and the other ordinatocs only ap-
Prozimately so, the greatest percoentage of error would
naturally be expocted to be at points near the supports.
The error in inches does not vary as much from one end
of the spaa to the other as does the percentage error,
because at the points of small deflection, any error at
all produces a large perceantage of error. Also, small
errors In the measurement of deflections produce large
percentage errors in the deflection values if these val-
ves are very small. Conseguently, a sizable portion of
the percentage "error! at peints of small deflection can
be attributed to measurement errors in the deflection
test.

Since the calculated deflection values are greater
at all panel points than the measured deflections, the
effective moment of inertia must Lhave been calculated in
too conservative a manaer, There were two assumptions
made in the calculation of the effective nmoment of in-
ortia which were obviously conservative. One was the as-
sunption that the panels containing the gusset plates had
as nuch shear defornation as the adjacent panels which
did not contain gusset plates. The second assumption was
that the elastic curve was represented by the deflected
position of the panel points of the lower chord menber,
which paunel points were deflected more under load than
the panel points of the upper chord. A4 nore accurate
Procedure would have been to consider the elastic curve
of the truss spar to be an average of tho upper and lower
chord deflection polygons.



N.A.C.A. Technical Note No.383 Flgs. 1,2,3

Diagrem Sheet

A
I
B
Fig.1l
Dt v
//(Y_l
7
//// ° \}}
— 7~
- D
— e (2 -
__/_/_ r rd

A s

v

7~
e
~
s
~

_ Z
B C

Fig.2




%g“

3302*
1 180 180* 180% 1wso® #
\ |
13
jan b o A
NN
18.1
21| (22) 3775(23) ~1673 () +93 (25)41523 (25)+2611+127)+3357 (23)1-3733(29)-!-3503(30)4-3007 (31)1.20711(32)4-&)3 33
~-B0%— 73" +— 15" —TJ -
ot 180"
tion of Reactlons:
-40,000 180 x_1080 = +1
(1) XM mbout B: ~-2000 X 20 + 180 (7.50 +x22.5 +=3§.?u4"{5)8,5 + 67.5 + 82,5 + 97.5 + 112,§
+127.5 + 2.5 + 1575 + 172,5) ~ Vy+ 180 = 0 ; .Vp = 13100  gra®
{R) =Va0: 47+ 858 - 2160 - 2000 = 0 ; vB=+3aoz*
() FA=0: +Hpg-HBpg=0 ; Vpgm= 3302 ; %- 850 ; Hpg = 6850 X cos 28950!
04823 HEO =~ 6000 #
Pig. 1A Calculation of primary loads

VP V'R

EBE °ON 93ON TWOTUYOd]

vr -%ta




E
Load Load Load
Fig.b
T
8 b £
e e D .——-—-——>
<t 1 -

Fig.7




N.A.C.A, Technical Note No. 383 Figs. &,9

Upper Chord A AT £fB g
~— ) [
~——_9 N
< — \J
/;>V Bt
—
///
- P -
—
///
o
Support Dt D C
Fig., 8




